Tel: +41 44 810 2150 Fax: +41 44 810 2350 Email: info@geosig.com www.geosig.com # **GMS-24 Measuring System** ## **Features** - Internet Enabled, Wireless Ready, Multifunctional Measuring System - 24 Bit, > 140 dB, 3 channels, up to 500 sps - ☐ Linux Operating System - On Board Processing and Evaluation - ☐ Timing via NTP (Network Time Protocol), Optional GPS or 433 MHz Wi-Synch - Enhanced Connectivity Options for GSM, GPRS, Satellite, Radio Telemetry or Landline Modem, Wired/Wireless Network - □ Ring Buffer Continuous Recording - Data Stream Output, Network Triggering - Rugged, Water Resistant Cast Aluminium Housing - ☐ Levelling Base Plate for easy installation and Replacement ## **Outline** The GMS-24 is the ground breaking second generation of the GeoSIG Measuring Systems with extended connectivity capability and flexibility, now in 24 Bit, reaching a dynamic range of more than 140 dB. It includes an Ethernet connection and optionally a 2.4 GHz Wi-Fi module to insure fast and reliable data transfer. Its design and efficiency makes it the first choice for any application requiring seismic instruments. With its optimized installation, operation and maintenance philosophy, the GMS offers the real possibility to implement such as high density arrays with total operating costs at a small fraction of conventional strong-motion seismograph networks. The instrument's software processes data in real time. If triggered by a seismic event, GMS calculates Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), Peak Ground Displacement (PGD) and Response Spectrum (RSA) at various frequencies of the event. GMS can report these parameters, which are related to the strength of shaking, to a data centre where a synopsis (such as a shakemap) for disaster management facilities can be generated in almost real time over the Internet. An event file is also recorded in the memory, which is sent out from the instrument and also securely accessible over the Internet. GMS is self-contained and is equipped with an uninterruptible power-supply, which provides, excluding options, more than 24 hours emergency operation without external power. Since the battery and power management are critical components in applications, excessive care has been taken in the charger design and the GMS is released as the first unit that can warn of a faulty battery before it is detected by a lack of communication during an AC power loss. The GMS uses an intelligent "Real Time Clock" (RTC) with self-learning temperature compensation at a fraction of power and thus cost of a TCXO. The RTC is able to synchronize with GPS or NTP (Network Time Protocol based on Internet UTC timing) to provide high timing accuracy. The instrument can be locally connected to a laptop through its ports for configuration, testing or data retrieval. The internal memory card can also be simply exchanged to retrieve the data. Several advanced communication options exist such as for connection over the Internet; it can utilize a list of servers where the communication is based on a simple but highly secure file exchange. Wired or Wireless Interconnected Network option enables the use of several units together in a time and trigger synchronised manner; wireless using the Wi-Fi and Wi-Synch options. ## Specifications GMS-24 Measuring System #### Applications - Seismic, Earthquake and Structural measuring and monitoring - Urban Seismology - High density monitoring networks - Shake / Hazard mapping - Disaster Management #### Set-up and Configuration Instrument setup is based on a configuration file in XML format. The configuration can be edited on site through the instrument console, exchanged by replacing the memory card or remotely from a server. Even if the configuration file can be manually edited at any time, a tool is provided to edit it securely. #### **Data Analysis** The GeoDAS program provides basic data evaluation in the field. The instrument supplies data in miniSEED format. The GeoDAS Data Analysis Package covers the requirements of detailed laboratory analysis for most earthquake and civil engineering applications. Any other software package reading miniSEED can as well be used. #### Sensor Various GeoSIG sensors as well as any other custom sensors can be housed internally or connected externally to the unit. In case of internal sensor, the levelling is done on the base plate of the GMS via three levelling screws. The base plate is mounted using a single bolt during #### Digitizer A/D conversion: Three 24 bit delta-sigma converters running in parallel. > 140 dB Dynamic range: Resolution: 24 Bit 500, 200, 100 or 50 SPS Sampling rate: Bandwidth: 40% of sampling rate Anti Aliasing Filter FIR (finite impulse response) #### **Triggering** Several "Trigger set"s can be defined in the instrument with each one freely defined regarding the source of trigger, trigger processing and selected channels for storage. For each trigger a "Minimum exceedance duration" can be defined to insure that the unit will not trigger on spikes. ## Trigger filter High pass filter: None, 0.1, 0.2, 0.5, 1 or 2 Hz* Low pass filter: None, 2, 5, 10 or 20 Hz* 2 poles on each side* (40 dB / decade) Band pass filter response: *: Any other value is freely useable, as long as does not lead to data loss. ### **Level Triggering** 0.01 to 100 % of full scale Range: ## STA/LTA Triggering STA period: 0.01 to 100 seconds LTA period: 1 to 1000 seconds STA/LTA-Ratio: 1 to 100 ratio ### **Event recording** Pre-event memory: 1 to 100 seconds Post-event duration: 1 to 1000 seconds #### **Event summary** Including: PGA, PGV, PGD, RSA Transmission delay: User defined from trigger time Ring Buffer User can request backward from console or Usage: remotely from server for portion of the buffer as start time/date and duration. Ringbuffer files with configurable duration. Method: Data stream 0 ms, full correction included Total Data Time Lag: GSBU, 1 second data packet Protocol: Storage Memory 2 GByte Removable Compact Flash Card Size and Type: higher capacity upto 32 GByte on request FAT32 formatted Management: Intelligent management of memory card capacity using policies as per file type and ring buffer capacity specification. miniSEED Recording format: 50 SPS: **Estimated Capacity:** 18 Mb / day 100 SPS: 36 Mb / day 200 SPS: 72 Mb / day 500 SPS 180 Mb / day since the data is compressed, capacity depends on the context of the data. #### CPU Processor: RAM: 32 MByte Flash: 16 MByte Operating System: uCLinux Time Base 20 ppm (10 min/year @ -10 to +50 °C), higher Standard accuracy: accuracy optional Accuracy after learn: 0.5 ppm (16 s/year or 2 ms/h) Accuracy with NTP: ±10 ms accuracy, assuming reasonable access Freescale ColdFire to NTP-servers External time interfaces: GPS (optional), Interconnection (optional) **Power Supply** 90 - 260 VAC / 50 - 60 Hz Input voltage Switched external power supply Type: Rechargeable, 12 VDC, 7.2 Ah Internal battery Sealed Gel-cell Lead acid battery 130 mA @ 12 VDC Power consumption: Autonomy: > 1 day Temperature compensated with battery fault Battery charger: detection. #### Indicators AC Power present LED, Green: Green: Run/Stop LED Event/Memory LED Yellow: Blue: Network link/Traffic LED Red Warning/Error LED #### Communication via ETHERNET, SERIAL or CONSOLE, or directly from removable memory card. Configuration, Data Retrieval Network requirements: Fixed or Dynamic IP on Ethernet LAN and/or Internet connection with Ethernet interface. Wifi network with WEP or WPA security parameters for instrument configuration. 68686 G GeoDAS proprietary protocol Security: Checksum and software handshaking Serial ports: 2 ports, 3 ports optional Console: 19200 bauds Stream: 38400, 57600, 115200 bauds Baud rates: 0 Stream: #### Alarm / Seismic Switch / Warning Option 4 independent relay contacts Alarms: for trigger alarm or error Alarm levels: Based on event triggers (NO or NC selectable during order) Relay Hold-On: 1 to 60 seconds (User programmable) Max. switching current: 2 A 150 VDC / 150 VAC Max. switching voltage: Max. switching capacity 60 W / 120 VA ## **Interconnected Network Option** Wired or Wireless (Wi-Synch) time synchronisation (Common Time) among several units are optional. Trigger synchronisation (Common Trigger) is handled over the Wired/Wireless Ethernet. Internal or external modems of different types are available optionally. ### Self Test Permanent self monitoring of hardware and software components without affecting their normal operation. Periodical state of health report based on comprehensive test of instrument. Period can be set in minutes and/or hours and/or days. Periodical sensor test. Period can be set in days. #### Environment -20 to +70 °C Operational temperature: -40 to +85 °C Storage temperature: Humidity: 0 to 100 % RH (non condensing) ## Housing Cast aluminium housing Type: 296 x 175 x 140 mm (W x D x H) Size: Size with base plate: 296 x 225 x 156 mm (W x D x H) Weight: 7.3 kg (incl. 2.65 kg of 7.2 Ah battery) Base plate: 1.3 kg . IP65 (NEMA 12) Protection: Mounting: Base plate with single bolt, surface mount. When base plate levelled and fixed, the instrument can be replaced without re- levelling.